

Relativistic properties of Weyl quasiparticles

TOPOLyon

S.Tchoumakov, M. Civelli and M.O.Goerbig

Phys. Rev. Lett. 117, 086402 (2016)

Short outline

- 1. Massless Dirac quasiparticles in condensed matter.
- 2. Relativistic analogy in presence of a magnetic field.
- 3. Observable effects in infrared spectroscopy.

Massless Dirac fermions can be tilted

• **2D** : Organic compound $\alpha - (BEDT - TTF)_2 I_3$

- Quasi-2D behavior,
- Under pressure : low-energy tilted Dirac cones,
- A.Kobayashi et al.,
 - J. Phys. Soc. Jpn. 76, 034711 (2007)

BEDT-TTF =

• **3D** : type-I and type-II Weyl semimetals

Theoretical description of tilted Weyl cones

The most general 3D Hamiltonian with linear dispersion and 2x2 matrix is

Electric analogy for the tilt

Weyl quasiparticles in an electromagnetic field (V(r), A(r)) have

Type-I and type-II Weyl semimetals

- Two different types of Weyl semimetals, based on the tilt t
 - ➢ t^2 < 1 : type-I WSM,</p>
 - → $t^2 > 1$: type-II WSM.
- Similar to Minkowsky space of special relativity where

- > vector ($\Delta \tau$, Δx) has $s^2 = \Delta \tau^2 \Delta x^2$ constant,
- → $\Delta \tau^2 > \Delta x^2$: time like coordinates,
- → $\Delta \tau^2 < \Delta x^2$: space like coordinates.

Special relativity : the Lorentz boost

• Lorentz boost in x-direction gives $x'_{\mu} = \Lambda^{\nu}_{\mu} x_{\nu}$ and $(V', A')_{\mu} = \Lambda^{\nu}_{\mu} (V, A)_{\nu}$

...and wave function also changes

 $\Psi'(\mathbf{x}',t') = S(\Lambda)\Psi(\mathbf{x},t)$ with $S(\Lambda) = e^{\eta\sigma_{\chi}/2}$

• here :

> non-relativistic Bloch electrons ($v_F \sim c/300$),

tilt is not Lorentz covariant.

...but it works!

Lorentz boost from quantum mechanics

• Rotation of arbitrary
$$\boldsymbol{u}$$
 in $\widehat{H} = \boldsymbol{u} \cdot \widehat{\boldsymbol{\gamma}}$
 $|\psi\rangle \mapsto |\psi'\rangle = e^{i\theta\widehat{\Gamma}/2} |\psi\rangle$
 $H \mapsto H' = e^{i\theta\widehat{\Gamma}/2} H e^{-i\theta\widehat{\Gamma}/2} = \boldsymbol{u} \cdot (\boldsymbol{R}_{\theta}^{-1}\boldsymbol{\gamma})$
 $= (\boldsymbol{R}_{\theta}\boldsymbol{u}) \cdot \boldsymbol{\gamma}$
with $[\widehat{\Gamma}, \widehat{\gamma}_{1}] = -i\widehat{\gamma}_{2}, [\widehat{\Gamma}, \widehat{\gamma}_{2}] = i\widehat{\gamma}_{1}$
 $\boldsymbol{R}_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$
 $\tan\theta = u_{2}/u_{1}$

Lorentz boost of \boldsymbol{v} in $\widehat{H} = \boldsymbol{v} \cdot \widehat{\boldsymbol{\gamma}}$ $|\psi
angle\mapsto|\psi'
angle=\mathcal{N}e^{\eta\widehat{\Gamma}/2}|\psi>$ $H - \mathcal{E}.I \mapsto (H - \mathcal{E}.I)' = \boldsymbol{v} \cdot (\boldsymbol{L}_{\eta}^{-1}\boldsymbol{\gamma}) - \mathcal{E} e^{-\eta \widehat{\Gamma}}$ $= (\boldsymbol{L}_{\eta}\boldsymbol{v}) \cdot \boldsymbol{\gamma} - \mathcal{E} e^{-\eta \widehat{\Gamma}}$ with $\{\widehat{\Gamma}, \widehat{\gamma}_1\} = \widehat{\gamma}_2, \ \{\widehat{\Gamma}, \widehat{\gamma}_2\} = \widehat{\gamma}_1$ **∧** V₂~B $\boldsymbol{L}_{\eta} = \begin{pmatrix} \cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta \end{pmatrix}$ \rightarrow tanh $\eta = v_2/v_1 = \beta$ v₁~E TOPOLyon

Lorentz boost from quantum mechanics

• Rotation of arbitrary
$$\boldsymbol{u}$$
 in $\widehat{H} = \boldsymbol{u} \cdot \widehat{\boldsymbol{\gamma}}$

$$|\psi\rangle \mapsto |\psi'\rangle = e^{i\theta\widehat{\Gamma}/2} |\psi\rangle$$

$$H \mapsto H' = e^{i\theta\widehat{\Gamma}/2} H e^{-i\theta\widehat{\Gamma}/2} = \boldsymbol{u} \cdot (R_{\theta}^{-1}\boldsymbol{\gamma})$$

$$= (R_{\theta}\boldsymbol{u}) \cdot \boldsymbol{\gamma}$$
with $[\widehat{\Gamma}, \widehat{\gamma}_{1}] = -i\widehat{\gamma}_{2}, [\widehat{\Gamma}, \widehat{\gamma}_{2}] = i\widehat{\gamma}_{1}$

$$R_{\theta} = \begin{pmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{pmatrix}$$

$$R_{\theta} = \begin{pmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{pmatrix}$$

$$\tan\theta = u_{2}/u_{1}$$

$$du_{2}$$

$$H = u_{2}/u_{1}$$

Tilted Weyl cones Lorentz boost

- Z.-M. Yu et al., Phys. Rev. Lett. 117, 077202 (2016)
- M. Udagawa et al, Phys. Rev. Lett. 117, 086401 (2016)
- S. Tchoumakov et al., *Phys. Rev. Lett.* **117**, 086402 (2016)
- In a uniform magnetic field, Lorentz boost of tilted Weyl cone

 $H(k) = v_F(\mathbf{k} + e\mathbf{A})\sigma_i + v_F\mathbf{t} \cdot (\mathbf{k} + e\mathbf{A})I \rightarrow H'^{(k)} = v'_F(\mathbf{k} + e\mathbf{A}')\sigma_i + tv_Fk_zI$

• In-plane tilt

$$\boldsymbol{t}_{\perp} = \frac{\boldsymbol{t} \times \boldsymbol{B}}{B} = (t_y, -t_x)$$

 \Rightarrow Landau quantization only for **B** close to tilt axis

$$\beta = |t_{\perp}| < 1 \Rightarrow |\sin \alpha| < 1/t$$
Deed ratio, characterizing Lorentz boost

Tilted Weyl cones Landau levels spectrum

Magnetooptical response of tilted WSM

- 2D : J. Sári et al., Phys. Rev. B 92, 035306 (2015)
- 3D: S. Tchoumakov et al., Phys. Rev. Lett. 117, 086402 (2016)

Electric regime of a type-I WSM

• One can add a true electric field to the effective one $t(E) = t - \frac{E \times B}{v_F B^2}$

the spectrum is, for
$$\boldsymbol{t} = \boldsymbol{0}$$
,
 $E_n^{\pm}(k_z) = \frac{E}{B}k_z \pm \sqrt{1 - w^2}\sqrt{v_z^2 k_z^2 + 2v_x v_y \sqrt{1 - w^2}eB n}$
with $\boldsymbol{w} = [\boldsymbol{E} \times \boldsymbol{B}/(v_F B^2)]$

Electric regime if
$$\frac{|E \times B|}{B^2} > v_F$$

Conclusions

- Tilted Weyl cones in 2D and 3D
 > 2D : organic compound α − (BEDT − TTF)₂,
 > 3D : Weyl semimetals (MoTe₂, Cd₃As₂, ...)
- Magnetic field effect simplified with Lorentz boosts, various regimes

3D Weyl semimetals	$ t_{\perp} < 1$	$ t_{\perp} > 1$
t < 1	Type-I WSM magnetic regime	Type-1 WSM electric regime
t > 1	Type-II WSM magnetic regime	Type-II WSM electric regime

• Signature in magnetooptical selection rules (violation of dipolar $n \rightarrow n \pm 1$)

 $v_z q_z I_B$