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Motivations

Spin-orbit coupling

Essential ingredient of topological
insulators

Inhibitor

2D time-reversal
symmetric TI

Hg(Cd)Te 2007

Chern insulator

Cr thin films 2015

Rashba spin-orbit
coupling in TRS
topological insulators

Dzyaloshinskii-Moriya
interaction in frustrated
antiferromagnets

Strong interactions: FQH-like phases?

How are the strongly interacting phases affected by spin-orbit
perturbations?



Electrons in a magnetic field in 2D: the FQHE

Single-particle picture:
Landau levels (LL)
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n = 0

n = 1

n = 2
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E

filling fraction ν = N/Nφ

Quantized Hall conductance: σxy = νe2/h (topological invariant)

ν = n
Integer Quantum Hall Effect
interactions can be neglected
single-particle problem

ν < 1
Fractional quantum Hall effect
interactions are crucial
N-body problem
Numerical methods are necessary
(ED, DMRG)



The Laughlin state

First observed FQH fractions: ν = 1/3

→ Series of Laughlin fractions: ν = 1/m, fermionic but also bosonic

Let us focus on the ν = 1/2 case

Bosonic state
Model Hamiltonian: H2body = PLLLV0δ(ri − rj)PLLL

Excitations have fractional charge e/2 and fractional statistics
(semions)

Exact diagonalization
with periodic boundary
conditions
N = 10, Nφ = 20  0
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Laughlin ν=1/2

Exact twofold degeneracy on the torus
Signature of intrinsic topological order



Quantized conductance without a magnetic field

Kagome lattice model with NN
hopping and spin-orbit coupling
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H0 = −t
∑

<i ,j>,σ=↑↓
c†iσcjσ

+iλ
∑

<i ,j>,σ,σ′

(Eij × rij) · σσ,σ′c†iσcjσ′

σ =

 σx
σy
σz

 Pauli matrices

(Eij × rij) ⊥ kagome plane → c†i↑cj↑ + c†i↓cj↓

(Eij × rij) 6⊥ kagome plane → interspin terms c†i↑cj↓ + c†i↓cj↑



Quantized conductance without a magnetic field

H0 =
(
−t+iλ′

) ∑
<i ,j>

c†i↑cj↑ +
(
−t−iλ′

) ∑
<i ,j>

c†i↓cj↓

Spin-polarized model: H0 = (−t+iλ′)
∑

<i ,j> c†i↑cj↑

(time-reversal symmetry can be broken by coupling to a ferromagnet)
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complex hopping

band structure
→
→

Aharonov-Bohm phase

Landau levels



Engineering a fractional Chern insulator

Goal: obtain a Chern band energetically similar to the LLL
A strong dispersion could destroy a potential CI fractional state
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k
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D

V interaction scale: δ � V � ∆

flat band limit: continuously deform
the lowest band δ → 0

lowest (occupied) band projection:
∆→∞ (' LLL projection)

FCI

Nx × Ny unit cells

periodic boundary conditions

N bosons, ν = N
NxNy

= 1/2

Hubbard interaction : ρiρi :
projection into the lowest band

FQH

Nφ flux quanta

torus

ν = N
Nφ

= 1/2

δ(ri − rj)
LLL projection



The Laughlin state on the kagome lattice Chern insulator
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N = 10
Nx = 5 Ny = 4

Kx =
∑
i

kxi mod Nx

Ky =
∑
i

kyi mod Ny

Exact diagonalization
Twofold quasidegenerate ground

state

Even in the ideal conditions, Laughlin phase not always realized

V � ∆ can work in some cases



Gap extrapolation

Relevance of thermodynamic limit extrapolation from small systems?
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Very little finite size effect

∆FQH/V0 = 0.615(5) ' ∆FCI/E2−body = 0.60(3)



Time-reversal symmetric topological insulator

Original spinful TRS Hamiltonian

H0 = −t
∑

<i ,j>,σ=↑↓
c†iσcjσ+iλ

∑
<i ,j>,σ,σ′

(Eij × rij) · σσ,σ′c†iσcjσ′

↑, ↓ pseudospin index for bosons
Z2 topological invariant:

1 if only H↑↑
0 + H↓↓

0 terms

can be driven to trivial phase for large strength of H↑↓
0

Quantitative statement in the
presence of strong interactions?

V

U

U

V

H = H↑↑0 + H↓↓0 + H↑↓0 + U
2 (: ρi↑ρi↑ : + : ρi↓ρi↓ :) + V : ρi↑ρi↓ :



From FCI to FTI (H↑↓0 = 0)

Expected phase diagram of the ν = 1/2 FTI?

V

U

U

V

V = 0: Laughlin⊗ Laughlin

Large V /U: fully polarized system

Sz ≡ N↑−N↓

2 = N/2

U/V only parameter

FCI : Laughlin: deg. = 2

 0.05

 0.1

 0.15

 0.2

 0  2  4  6  8

E

kx + Nx ky

∆FCI

N = 5, Nx = 5, Ny = 2

FTI : Laughlin⊗ Laughlin: deg. = 2× 2

 0.85

 0.9

 0.95

 0  2  4  6  8

E

kx + Nx ky

δFTI

∆FTI

N = 10, Nx = 5, Ny = 2, V = 0.5U



Stability of the ν = 1/2 FTI: V coupling (H↑↓0 = 0)

Bulk signature:

Energy spectrum: ground state fourfold almost degeneracy + gap
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Stability of the ν = 1/2 FTI: H↑↓0 6= 0

HR(k) =

(
hCI(k) R

Rt h∗CI(−k)

) R = −Rt ∈ R, constant, breaks
inversion symmetry
R = α1R1 + α2R2 + α3R3︸ ︷︷ ︸

breaks C3 sym.

α2 = α3 = 0 → preserves C3 α3 6= 0→ breaks C3
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No interlayer interaction V = 0.5U No interlayer inter.

FTI stability zone has significant overlap with one-body
topological region

CR, B.A. Bernevig, N. Regnault PRB 2014



Spontaneous time-reversal symmetry breaking: the kagome
chiral spin liquid

H = J1

∑
<i ,j>

SiSj +J2

∑
�i ,j�

Sz
i S

z
j +J3

∑
≪i ,j≫

Sz
i S

z
j

J1 = J2 = J3: DMRG studies have found ground state properties
S. S. Gong, W. Zhu, and D. N. Sheng, Sci. Rep. 2014
S.S Gong, W. Zhu, L. Balents, D.N. Sheng, PRB 2015

Y.-C. He, Y. Chen, PRL 2015

no lattice symmetry breaking

spontaneous time-reversal symmetry breaking

akin to ν = 1/2 Laughlin state (Kalmeyer-Laughlin)

Chiral spin liquid



Breakdown of the CSL with Dzyaloshinskii-Moriya
interaction

Stability with respect to spin-orbit coupling?

Dzyaloshinskii-Moriya interaction: HD = D
∑
<i ,j>

ez · (Si × Sj)

Herbertsmithite: D/J1 ' 0.05− 0.1

Scalar spin chirality
χ =

∑
i ,j ,k∈∆ Si · (Sj × Sk)

(measures time-reversal
symmetry breaking)
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Conclusion

FQH-like phases at B = 0:

from the interplay of spin-orbit coupling and interactions
from interactions alone

Stability of TRS fractional topological insulators

with coupling interaction
with Rashba coupling

Rare-earth triangular antiferromagnet? (anisotropic spin-spin
interactions due to spin-orbit, DM forbidden by symmetry)


