

Laboratoire de Physique Théorique

Pierre Pujol Laboratoire de Physique Théorique

Université Paul Sabatier, Toulouse

Topological states in quantum antiferromagnets

Thanks to I. Makhfudz, S. Takayoshi and A. Tanaka

Quantum AF systems : GS zoology

Non frustrated AF:

(anti-ferro) magnetic order

Quantum AF systems : GS zoology

(anti-ferro) magnetic order Non magnetic order

Quantum AF systems : GS zoology

GS of the AKLT type (SPT)

 $\rm Z_2$ spin liquid : The Rokhsar-Kivelson model in the triangular lattice (Moessner and Sondhi)

$$H_{\Box}^{(J)} = -J \sum_{\Box} \left\{ \left| \underbrace{\bullet}_{\Box} \bullet^{\bullet} \right\rangle \left\langle \underbrace{\bullet}_{\Box} \bullet^{\bullet} \right| + \text{H.c.} \right\}$$
$$H_{\Box}^{(V)} = V \sum_{\Box} \left\{ \left| \underbrace{\bullet}_{\Box} \bullet^{\bullet} \right\rangle \left\langle \underbrace{\bullet}_{\Box} \bullet^{\bullet} \right| + \left| \underbrace{\bullet}_{\Box} \bullet^{\bullet} \right\rangle \left\langle \underbrace{\bullet}_{\Box} \bullet^{\bullet} \right| \right\}$$

Chiral spin liquids

Looking for a QHE state in magnetic degrees of freedom (Kalmeyer and. Laughlin, Wen, Wilczek, and Zee, Yang, Warman, and Girvin....)

Chiral spin liquids

Looking for a QHE state in magnetic degrees of freedom (Kalmeyer and. Laughlin, Wen, Wilczek, and Zee, Yang, Warman, and Girvin....)

→ The kagome lattice with explicitly broken TRI is a good candidate (ex. Fradkin et al., Moessner et al.):

$$H = J \sum_{\langle i,j \rangle} \left\{ S_i^x S_j^x + S_i^y S_j^y + \lambda S_i^z S_j^z \right\} - h_{\text{ext}} \sum_i S_i^z,$$
$$H_{\text{ch}} = h \sum_{\Delta} \chi_{ijk}(\Delta) = h \sum_{\Delta} S_i \cdot (S_j \times S_k),$$

Write down a path integral for spins (Haldane)

→ A particular contribution to the action, the Berry phase term

$$Z = \int D\mathbf{n} \ e^{-S_E(\mathbf{n})}$$

 $S_E = -\langle \mathbf{n} | H | \mathbf{n}
angle + is \omega(\mathbf{n})$

Haldane's NLSM for spin chains:

$$\mathcal{S}_{\text{eff}}[\boldsymbol{n}(\tau, x)] = \frac{1}{2g} \int d\tau dx \{ (\partial_{\tau} \boldsymbol{n})^2 + (\partial_x \boldsymbol{n})^2 \} + 2\pi i S Q_{\tau x}$$
$$Q_{\tau x} = \frac{1}{4\pi} \int d\tau dx \boldsymbol{n} \cdot \partial_{\tau} \boldsymbol{n} \times \partial_x \boldsymbol{n} \in \mathbb{Z}.$$

Planar and CP¹ representation: $n^{\text{pl}} \equiv (\cos \phi, \sin \phi, 0)$ $Q_{\text{v}} = \frac{1}{2\pi} \int d\tau dx (\partial_{\tau} \partial_{x} - \partial_{x} \partial_{\tau}) \phi \in \mathbb{Z}.$

$$a_{\mu} = \partial_{\mu}\phi/2, \qquad S_{\Theta} = i\frac{\Theta}{2\pi}\int d\tau dx (\partial_{\tau}a_x - \partial_x a_{\tau}) \quad (\Theta = 2\pi S)$$

+

And for an open spin *S* chain, integrate to get a boundary topological term (Ng, 1994) Example : spin 1 AKLT chain

$$\mathcal{S}_{\text{edge}} = \pm i S \int d\tau a_{\tau}$$

2-D case (square lattice), monopoles play a role (Haldane):

$$\boldsymbol{n} = \hat{z}^{\dagger} \frac{\boldsymbol{\sigma}}{2} z \qquad \qquad \mathcal{S}_{\text{eff}}^{2\text{d}} = \frac{1}{2K} \int d\tau d^2 \boldsymbol{r} (\epsilon_{\mu\nu\lambda}\partial_{\nu}a_{\lambda})^2 + i\frac{\pi S}{2} Q_{\text{mon}}^{\text{tot}} \\ a_{\mu} = iz^{\dagger} \partial_{\mu} z \qquad \qquad = \int d\tau d^2 \boldsymbol{r} \Big\{ \frac{1}{2K} (\epsilon_{\mu\nu\lambda}\partial_{\nu}a_{\lambda})^2 + i\frac{S}{4} \epsilon_{\mu\nu\lambda}\partial_{\mu}\partial_{\nu}a_{\lambda} \Big\}$$

Only even-integer spins admit non-degenerate GS

Work donne in colaboration with S. Takayoshi and A. Tanaka, arXiv:1609.01316

And for a system with boundary, integrate again to get a boundary topological term

$$S_{y-\text{edge}} = \pm i \frac{S}{4} \int d\tau dx (\partial_{\tau} a_x - \partial_x a_{\tau}) = \pm i \frac{\pi S}{2} Q_{\tau x}$$

 $0 \pmod{4}$ vs $2 \pmod{4}$: Only the second is SPT

Adapt the path integral approach to the presence of a magnetic field (Tanaka, Totsuka, Hu)

The starting point is a quasi-classical configuration with non-zero neat magnetization

 $\vec{S}_j = (S\sin\theta_j \ \cos\phi_j, S\sin\theta_j \ \sin\phi_j, S\cos\theta_j)$

Integrate out short ranged fields to get the effective action for the Goldstone field :

$$S = \int dx d\tau \left\{ \frac{K_{\tau}}{2} (\partial_{\tau} \phi)^2 + \frac{K_x}{2} (\partial_x \phi)^2 + i \left(\frac{S - m}{a} \right) (\partial_{\tau} \phi) \right\}$$

Berry phase term

1

Coupling to (Chern) Charge degrees of freedom

Then, extend the study to the presence of moving holes

$$H_{hopp} = -t \sum_{j} \langle \Omega_j | \Omega_{j+1} \rangle \, \psi_{j+1}^{\dagger} \psi_j + \text{h.c.}$$

$$\begin{split} \mathcal{S}_{eff} &= \int dx d\tau \left\{ \begin{array}{l} \frac{1}{2} K_x (\partial_x \phi)^2 + \frac{1}{2} K_t (\partial_\tau \phi)^2 \\ &+ i \left(1 - \frac{\delta}{2S} \right) \left(\frac{S - m}{a} \right) (\partial_\tau \phi) \right\} \\ &+ i g_1 \int dx d\tau \left\{ \bar{\Psi}(x) \sigma_3 \left(\partial_x + i \frac{S(S - m)}{m} \partial_x \phi \right) \Psi(x) \right\} \\ &- \int dx d\tau \left\{ \bar{\Psi}(x) \mathbb{I} \left(\partial_\tau - i g_2 (\partial_\tau \phi) \right) \Psi(x) \right\}, \end{split}$$

$$H = J \sum_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_i (S_i^z)^2 + \sum_{ij} \mathbf{D}_{DM}^{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$

Doped electrons feel an effective flux of $\pm \pi$ per plaquette

Work donne in colaboration with I. Makhfudz, *Phys. Rev.* **B** 92, pp. 144507, 2015.

Dirac-like dispersion relation at half filling for the electrons

Add dimerization to gap the charge degrees of freedom

Effective action for the charge in the

$$\operatorname{con}_{\overline{\psi},\psi} = \int d^2x \int d\tau \overline{\psi} [\gamma^{\mu}(-i\partial_{\mu} - eA_{\mu}) + m_{\psi}]\psi$$

Integrate out these "harmless" degrees of freedom and get an effective action for the spin sector

$$S_{\phi} = \int d^2x \int d\tau \frac{K_{\tau}}{2} (\partial_{\tau}\phi)^2 + \frac{K_r}{2} (\nabla\phi)^2 + i\left(\frac{S}{a^2}\right) \partial_{\tau}\phi$$
$$S_{CS}[A] = i\frac{N_f}{2} \frac{e^2}{4\pi} \frac{m_{\psi}}{|m_{\psi}|} \int d^3x \epsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda} \qquad A_{\mu} = \partial_{\mu}\phi$$

$$\mathcal{L}_{CS} = i \frac{\kappa}{2\pi} \epsilon^{\mu\nu\lambda} \partial_{\mu} \phi \partial_{\nu} \partial_{\lambda} \phi$$

Coupling to (Chern) Charge degrees of freedom Effective action for the spin sector : Dual vortex theory

$$\begin{split} L[J_{\mathcal{V}}] &= \int_{k} J_{\mathcal{V}}^{\mu}(k) \frac{1}{k^{2}} \left(\left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^{2}} \right) - \kappa \pi \epsilon_{\mu\nu\alpha} k^{\alpha} \right) J_{\mathcal{V}}^{\nu}(-k) \\ J_{\mathcal{V}}^{\lambda} &= (1/(2\pi)) \epsilon^{\lambda\mu\nu} \partial_{\mu} \partial_{\nu} \phi_{\gamma} \end{split}$$

New contribution to the Berry phase term :

$$\mathcal{N}_{\text{linking}} = \frac{1}{4\pi} \oint_{\gamma_1} \oint_{\gamma_2} \frac{(\mathbf{r}_1 - \mathbf{r}_2) \cdot (d\mathbf{r}_1 \times d\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|^3}$$

 $e^{i4\pi\kappa q_1q_2+iq_1q_2E_{\text{Coulomb}}}$

→ The partition function of an anyon gaz

$$\Theta = 2\kappa\pi = \pi e^2/2$$

here

$$e = -\frac{1}{2\sqrt{2}} \left[1 - \frac{J}{\sqrt{J^2 + D_{DM}^2}} \right]^{\frac{1}{2}}$$

upper bound $\Theta = \pi/16$

Protection against the spin gap

Perspectives: in search of a chiral plateau state

→ Find a microscopic model where the vortex condensation is possible

→ This would realize the equivalent of a QHE state in the spin sector

This scenario is expected to reproduce when coupling to a generic Chern insulator

Thank you for your attention!