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Motivation 

Josephson junctions as probes of topology: 
 
 
 
 
 
 
 
2 Majorana bound states form 
1 Andreev bound state (ABS)  
 
 
 
→  Josephson effect yields signatures of topological superconductivity 
 

    Kitaev (2003), Fu & Kane (2009) 
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Motivation 

Josephson junctions as topological materials ? 
 
conventional s-wave superconductors: 
Andreev bound state spectrum … 
 

•  two-terminal junction: 
 only accidental zero-energy states 

 

•  multi-terminal junction ? 

     n  terminals 
     →  n – 1  independent phases 

 
 
 

   n ¸ 4: Weyl singularities ! Lyon - October 2, 2016 3 
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Main result 

topologically-protected 
Weyl singularities in the ABS spectrum  

  of junctions with  n ¸ 4  terminals 
 

  superconducting phases 
  = quasi-momenta 
  →  n-1 dimensional 
   “bandstructure” 

 
 
manifestations: 
quantized transconductance  
between 2 voltage-biased terminals 
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FIG. 1. General setup of the multi-terminal junction, and examples of typical ABS

spectra. a) The superconducting leads with phases φα, α = 0, . . . , n− 1, are connected through

a scattering region described by the scattering matrix S. b) Generic ABS energy spectrum versus

φ1, away from a Weyl singularity. c) ABS energy spectrum versus φ1, where the other phases are

tuned to a Weyl singularity. Note the gap closing.

Since the Weyl singularities appear as points in the 3D phase space, a third phase φγ

may be used to tune the system through Weyl points, thus changing the Chern number. We

see that a given state k only contributes to Bαβ when it has an even occupation number,

nk↑ = nk↓. The topological signature is therefore robust provided the fermion parity is

preserved, a fact which has also been pointed out for other topological systems realized in

superconductors9. Quasiparticle poisoning, by which a single quasiparticle enters a bound

state, enables transitions between even and odd ABS occupation21, and can therefore affect

the signal. In the following, we focus on the ground state, nkσ = 0 for all k and σ, where

the Chern number may be nontrivial.

Importantly, the current response of the junction with slowly varying phases reveals the

Chern number. Biasing lead β with a voltage eVβ ≪ ∆ gives rise to the instant current to

contact α (Supplementary Discussion)

Iα(t) =
2e

!

∂E

∂φα

− 2eφ̇βB
αβ , (4)

where φ̇β = 2eVβ/!. The first term corresponds to the adiabatic current and the second

term is the first order correction in the phase velocity. Let us now apply constant voltages



Outline 

 
 
•  Weyl singularities 

•  Andreev bound state (ABS) spectrum of multi-terminal junctions 

•  Quantized transconductance 
 
•  Beyond the adiabatic regime 

•  Conclusion 
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Weyl singularities 

•  topologically protected zero-energy states 
 

3D Weyl Hamiltonian: 
 
Weyl points carry a topological charge: 
 

•  Weyl points are monopoles of Berry curvature 

 
•  Weyl points only appear in pairs 

 of positive and negative charge 
 →  total charge = 0    Nielsen & Ninomiya (1981) 

 

Weyl semimetals have been discovered recently (TaAs …) Lyon - October 2, 2016 6 
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ABS spectrum 

•  scattering region described by scattering matrix  S 
 in the space of  N = ∑α Nα  channels 

 
•  time-reversal symmetry:  S = ST 

•  ABS spectrum determined through 
  Beenakker (1991) 

 with      & 
 
•  eigenvalues 

 corresponding to energies  §Ek  with 
 
•  zero-energy state at  Φ(0) : doubly degenerate eigenvalue  –1 
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The topological properties of multi-terminal junctions result from the appearance of Weyl

singularities in the ABS spectrum. The ABS for an n-terminal superconducting junction are

determined through (S1)

| i = S NS A| i , with S N =

 
S 0
0 S ⇤

!
and S A =

 
0 ei�

e�i� 0

!
e�i� . (S1)

Here, the two-by-two structure indicates the Nambu space of electrons and holes. The scattering

matrix S N describes the normal metal scattering region, where S and S ⇤ provide the scattering

amplitudes for electrons and holes, respectively. The matrix S A accounts for the phase acquired

in the Andreev reflection processes, where � = arccos(E/�) and ei�̂ is a diagonal matrix that

assigns to each channel the phase of the corresponding terminal. Note that the wave function

| i is written in terms of the outgoing states in a given spin sector � =", #.
To determine the ABS energy bands, it is su�cient to reduce the above equation to the

electron subspace, where we find the determinant condition for the bound state energies E as

det
h
1 � e�2i�A(�̂)

i
= 0 , (S2)

with the unitary matrix A(�̂) = S ei�̂S ⇤e�i�̂. The matrix A possesses the particle-hole symmetry

A⇤ = U†AU, where U(�̂) = ei�̂S T . This implies that the eigenvalues of A come in pairs 1,

e±iak , corresponding to energies ±Ek, where Ek = � cos(ak/2) with 0  ak  ⇡. We assign

eigenvectors | +k i and | �k i = U | +k i⇤ to the pair of eigenvalues e±i↵k , respectively.

If there is a zero-energy solution at �̂(0), the spectrum of the unitary matrix A(�̂(0)) has

a doubly degenerate eigenvalue �1. The corresponding orthogonal eigenvectors are given as

|a+i = | +0 (�̂(0))i and |a�i = | �0 (�̂(0))i. In the vicinity of the singularity at �̂(0), we expand the

determinant equation (S2) for small ��̂ = �̂ � �̂(0) ⌧ 1 and E ⌧ �. Up to first order, we find

ei2� ⇡ �1 + 2iE/� and

A(�̂) ⇡ A(�̂(0)) + iS ��̂S †A(�̂(0)) � iA(�̂(0))��̂ . (S3)
1For an odd number of channels, there is an additional eigenvalue 1 corresponding to a state at the gap edge.
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Weyl-Hamiltonian 

•  in the vicinity of the zero-energy solution at  Φ(0) : 
 effective low-energy Weyl Hamiltonian 
 in the subspace of the 2 orthogonal eigenstates: 
 HW = ∑ α, i Mαi δφα τi  

 
 →  3 independent phases are needed to tune the energy to  E = 0 
 →  Weyl singularities exist in junctions with  n ¸ 4  terminals 
 
•  topological charge of the Weyl point in a 3D subspace: 

 χ = sign det [{Mαi}] 
 

•  time-reversal symmetry: Weyl point at  Φ(0) 

  →  Weyl point with the same topological charge at  –Φ(0) 

•  Weyl points come in multiples of 4 
 Lyon - October 2, 2016 8 



ABS spectrum 

example:  
4-terminal junction 
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FIG. 1. General setup of the multi-terminal junction, and examples of typical ABS

spectra. a) The superconducting leads with phases φα, α = 0, . . . , n− 1, are connected through

a scattering region described by the scattering matrix S. b) Generic ABS energy spectrum versus

φ1, away from a Weyl singularity. c) ABS energy spectrum versus φ1, where the other phases are

tuned to a Weyl singularity. Note the gap closing.

Since the Weyl singularities appear as points in the 3D phase space, a third phase φγ

may be used to tune the system through Weyl points, thus changing the Chern number. We

see that a given state k only contributes to Bαβ when it has an even occupation number,

nk↑ = nk↓. The topological signature is therefore robust provided the fermion parity is

preserved, a fact which has also been pointed out for other topological systems realized in

superconductors9. Quasiparticle poisoning, by which a single quasiparticle enters a bound

state, enables transitions between even and odd ABS occupation21, and can therefore affect

the signal. In the following, we focus on the ground state, nkσ = 0 for all k and σ, where

the Chern number may be nontrivial.

Importantly, the current response of the junction with slowly varying phases reveals the

Chern number. Biasing lead β with a voltage eVβ ≪ ∆ gives rise to the instant current to

contact α (Supplementary Discussion)
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Since the Weyl singularities appear as points in the 3D phase space, a third phase φγ

may be used to tune the system through Weyl points, thus changing the Chern number. We

see that a given state k only contributes to Bαβ when it has an even occupation number,

nk↑ = nk↓. The topological signature is therefore robust provided the fermion parity is

preserved, a fact which has also been pointed out for other topological systems realized in

superconductors9. Quasiparticle poisoning, by which a single quasiparticle enters a bound

state, enables transitions between even and odd ABS occupation21, and can therefore affect

the signal. In the following, we focus on the ground state, nkσ = 0 for all k and σ, where

the Chern number may be nontrivial.

Importantly, the current response of the junction with slowly varying phases reveals the

Chern number. Biasing lead β with a voltage eVβ ≪ ∆ gives rise to the instant current to

contact α (Supplementary Discussion)

Iα(t) =
2e

!

∂E

∂φα

− 2eφ̇βB
αβ , (4)

where φ̇β = 2eVβ/!. The first term corresponds to the adiabatic current and the second

term is the first order correction in the phase velocity. Let us now apply constant voltages

(φ2,φ3) = (φ2
(0),φ3

(0)) 

(φ2,φ3) ≠ (φ2
(0),φ3

(0)) 



ABS spectrum 

Chern number: 
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4-terminal junctions: Occurence of Weyl points 

•  4 single-channel terminals:   
 ~ 5% of random scattering matrices possess Weyl points 

•  4 multi-channel terminals: 
 example:  Nα = 12, 11, 10, 9 
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Figure 2: Topological characterization of the 4-terminal junction, for both the single- and
multi-channel case. a) Position of the four Weyl points in the space of �1,2,3 of the single-
channel 4-terminal junction, the colour code indicating the respective charge. b) The resulting
transconductance G12 indicating the Chern number, as a function of �3 for the same single chan-
nel junction as in panel a). c) Chern number as a function of �3 for a multi-channel 4-terminal
junction, where the contacts 1, 2, 3, and 0 contain 12, 11, 10, and 9 channels, respectively. In
this particular example, the junction hosts 36 Weyl points.
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Figure S2: Histogram displaying the occurrence of random scattering matrices yielding N
Weyl points for the four-terminal multi-channel junction.

onal matrix. A random symmetric scattering matrix was then generated as S = UTU. For each

S , we numerically checked the existence of zeros of the function
���det[1 + A(�̂)]

��� in the space of

phases.

In the single-channel case, we ran the check for 965 randomly generated matrices S , out of

which 46 gave rise to zero-energy solutions. Thus, we found that a total of roughly 5% of all

scattering matrices yield Weyl points, while the remaining 95% provide a trivial junction.

When increasing the number of channels in each terminal, we found that the maximal num-

ber of Weyl points scales with the number of channels, and that the probability of a junction

without Weyl points decreases significantly. A total of 324 random scattering matrices were

generated for a junction with four terminals, where the terminals have 12,11,10, and 9 chan-

nels, respectively. In Fig. S2 we show the histogram displaying the occurrence of randomly

generated scattering matrices that provide N zero-energy Weyl points. Only 4 scattering ma-

trices gave rise to a junction without zero-energy Weyl points. Note that our algorithm has a

small, but finite probability to miss some zeros. As a consequence, while the number of Weyl

points has to be a multiple of 4 because of time-reversal symmetry (see main text), the algorithm

misidentifies a few cases as having an odd multiple of 2 Weyl points.

10

number of Weyl points 
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•  4 single-channel terminals:   
 ~ 5% of random scattering matrices possess Weyl points 

•  symmetric structures: 
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4-terminal junctions: Occurence of Weyl points 

•  4 single-channel terminals:   
 ~ 5% of random scattering matrices possess Weyl points 

•  symmetric structures: 

   Weyl points of a given charge at (0, π±φ , ±φ , π)

   & of opposite charge at  (0, π , ±φ , π±φ)
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•  current operator: 

•  use instantaneous eigenbasis  
 to compute expectation value for time-dependent phases: 

 
contribution of ABS 
 
 
adiabatic supercurrent  Iαv

0(t) 
 
first correction: 
 

  with     Berry curvature 
 

EA⌫(t) | ⌫(t)i = Ĥ(t) | ⌫(t)i

Consequences of Weyl singularities: The current 
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We note that there is the possibility of Weyl singularities at finite energy. Due to particle-

hole symmetry, they appear in pairs at energies ±E with the same charge. Because of particle-

hole symmetry and spin degeneracy, solutions at energy �E can be ascribed to solutions at

energy E in the opposite spin sector 2. Thus, zero-energy Weyl points are singly degenerate,

while finite energy Weyl points are doubly degenerate. As the finite energy Weyl singularities

do not a↵ect the ground state Chern numbers used to characterize the system, we do not discuss

them any further. Note that the outgoing wavefunctions in particle-hole space used to compute

the Chern numbers are given as | ±k i = (| ±k i, e�i�U†| ±k i)T . Furthermore, | k�i is identified

with | +k i in the corresponding spin sector �.

Derivation of the current

In the following, we establish the connection between the current and the Berry curvature for

phases that change slowly in time.

The current operator through lead ↵ is defined as

Î↵ = 2e
@Ĥ
@�↵
, (S7)

where Ĥ is the Bogoliubov-de Gennes Hamiltonian. In order to calculate its expectation value

for time-dependent phases �̂(t), we introduce the basis of instantaneous wave functions of the

time-dependent Bogoliubov-de Gennes Hamiltonian Ĥ(t), such that Ek(t)|'k�(t)i = Ĥ(t)|'k�(t)i.
Solving the time-dependent equation i~|'̇i = Ĥ(t)|'i in that basis, up to first order in phase

velocity �̇, we obtain the current contribution from state k with spin � as

I↵k(t) ⇡ 2e
"
1
~

@Ek(t)
@�↵

� i
@ h'k�(t)|
@�↵

|'̇k�(t)i + ih'̇k�(t)|@ |'k�(t)i
@�↵

#
. (S8)

Note that I↵k does not depend on spin. The first term corresponds to the adiabatic supercur-

rent. Introducing the Berry curvature B↵�
k = �2Im

h
@�↵h'k�|@�� |'k�i

i
, the second term reads

2Note that in the main text we restrict ourselves to positive energies while keeping both spin sectors.

4



•  total current: 

•  consider 2 voltage-biased leads:  φα = 2eVαt 

Quantized transconductance 
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•  total current: 

•  consider 2 voltage-biased leads:  φα = 2eVαt 

 →  phase sweeps 2D “Brillouin zone” 
 (Vα,β ¿ Δ  incommensurate) 

Quantized transconductance 
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•  total current: 

•  consider 2 voltage-biased leads:  φα = 2eVαt 

 →  phase sweeps 2D “Brillouin zone” 
 →  time-averaged current in the ground state (nkσ = 0): 
 
 
 

 where        integer 
 

  = Chern number 

Quantized transconductance 
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replaced by its average value. Thus, we find that the dc current is linear in the voltages, and the

transconductance is defined by the Chern number

I
↵

= G↵�V
�

with G↵�

= �2e2

⇡~ C↵�. (5)

Equation (5) shows that multi-terminal junctions exhibit a dc current response typical for the

quantum Hall effect, although based on different physics. The transconductance quantum is

four times bigger than in the quantum Hall effect, which can be traced to the 2e charge of the

superconducting Cooper pairs. To extract the small dc signal, the averaging time needs to be

sufficiently long. The relevant time scale is determined by the low-frequency current noise

(supplementary online text). Note that quantum Hall-like conductance quantization has also

been proposed in superconducting devices with finite charging energy and hosting quantum

phase slips (22). Furthermore, superconducting junctions with a gate-tunable charging energy

may realize topologically-protected discrete charge pumping (23).

We now focus on a 4-terminal junction and investigate the energy spectrum as a function

of the three independent phases �1,2,3. As mentioned above, such a 3D bandstructure may host

Weyl points with positive or negative topological charge. The Nielsen-Ninomiya theorem (24)

implies that the total topological charge of the system is zero, such that the number of Weyl

points is always even. Furthermore, time-reversal invariance corresponds to a mapping from ˆ�

to �ˆ�, hence a Weyl point at ˆ�(0) has a counterpart at �ˆ�(0) with the same topological charge.

Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only one channel, the system may realize 0

or 4 Weyl points, corresponding to a topologically trivial or nontrivial 3D material, respectively.

If a scattering matrix yielding Weyl points is found, small changes in the scattering matrix only

modify their position, but cannot gap them. Namely, as the Weyl points carry a topological

charge, individual Weyl points are stable and annihilation is possible only when two Weyl points

6



   experimental manifestation: 
   quantized transconductance 
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   experimental manifestation: 
   quantized transconductance 
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Ī↵ = �4e2

h
V�

X

k

C↵�
k (nk" + nk# � 1)

ground state:  nkσ = 0 
→  poisoning ? (Landau-Zener …) 



•  multiple Andreev reflections 

 →  compute the currents using (Floquet) scattering theory 
 
specific scattering matrix  
with Weyl points at  ±(1.7, -1.9, -2.8, 0)  and  ±(2.7, -1.8, 1.0, 0) 
 
•  choose  
 
•  commensurate voltages  →  average over  χ 
•  obtain conductances from 2 sets of voltages:  (n1, n2) = (1, 3)  and  (2, 3) 

•  account for inelastic relaxation with a Dynes parameter  Γ  in the leads 
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currents as a fct of  V  at fixed  φ0 ( Γ = 0.002Δ ): 
 
 
 
 
 
 
 
 
 
 
 
 

 φ0 = 2.21  (topological)    φ0 = 0  (trivial)   

 

Beyond the adiabatic regime 
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(n1, n2) = (1, 3) 
 
 
 
 
 
 
(n1, n2) = (2, 3) 
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conductances as a fct of  V  at fixed  φ0 = 2.21  ( Γ = 0.002Δ ): 

 

normal state conductances 
(G12 = G21) 

multiple Andreev reflections 

quantized 
transconductances 



Beyond the adiabatic regime 

Lyon - October 2, 2016 23 

conductances as a fct of  V  at fixed  φ0 = 2.21  ( Γ = 0.002Δ ): 

 

quantized 
transconductances 

quantization requires fixed parity: 
 
 
 
 
 
where 

eV e�EA/eV < �

! eV < eV? ⇠ EA

log(EA/�)

EA = min
�1,�2

EA(�0,�1,�2)
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FIG. 1. General setup of the multi-terminal junction, and examples of typical ABS

spectra. a) The superconducting leads with phases φα, α = 0, . . . , n− 1, are connected through

a scattering region described by the scattering matrix S. b) Generic ABS energy spectrum versus

φ1, away from a Weyl singularity. c) ABS energy spectrum versus φ1, where the other phases are

tuned to a Weyl singularity. Note the gap closing.

Since the Weyl singularities appear as points in the 3D phase space, a third phase φγ

may be used to tune the system through Weyl points, thus changing the Chern number. We

see that a given state k only contributes to Bαβ when it has an even occupation number,

nk↑ = nk↓. The topological signature is therefore robust provided the fermion parity is

preserved, a fact which has also been pointed out for other topological systems realized in

superconductors9. Quasiparticle poisoning, by which a single quasiparticle enters a bound

state, enables transitions between even and odd ABS occupation21, and can therefore affect

the signal. In the following, we focus on the ground state, nkσ = 0 for all k and σ, where

the Chern number may be nontrivial.

Importantly, the current response of the junction with slowly varying phases reveals the

Chern number. Biasing lead β with a voltage eVβ ≪ ∆ gives rise to the instant current to

contact α (Supplementary Discussion)

Iα(t) =
2e

!

∂E

∂φα

− 2eφ̇βB
αβ , (4)

where φ̇β = 2eVβ/!. The first term corresponds to the adiabatic current and the second

term is the first order correction in the phase velocity. Let us now apply constant voltages



conductances as a fct of  V  at fixed  φ0 = 2.21  ( Γ = 0.002Δ ): 
 
 
 
 
 

      for comparison: φ0 = 0  
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conductances as a fct of  φ0  at fixed  V = 0.0003Δ/e : 

 

Beyond the adiabatic regime 
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topological 
regime 

topological 
regime 

large dissipation 
close to Weyl points 
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Conclusion 

•  Weyl singularities in ABS spectrum 
 of multi-terminal Josephson junctions  
 without any fine-tuning 

•  superconducting phase = quasi-momenta 

•  transconductance  
 between 2 voltage-biased terminals 
 probes Chern number 

 
 
multi-terminal Josephson junction 
= topological material 
 

  R.-P. Riwar, M. Houzet, JSM, and Y.V. Nazarov,  
  Nat. Commun. 7, 11167 (2016); 
  E. Eriksson et al.,in preparation 
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replaced by its average value. Thus, we find that the dc current is linear in the voltages, and the

transconductance is defined by the Chern number

I
↵

= G↵�V
�

with G↵�

= �2e2

⇡~ C↵�. (5)

Equation (5) shows that multi-terminal junctions exhibit a dc current response typical for the

quantum Hall effect, although based on different physics. The transconductance quantum is

four times bigger than in the quantum Hall effect, which can be traced to the 2e charge of the

superconducting Cooper pairs. To extract the small dc signal, the averaging time needs to be

sufficiently long. The relevant time scale is determined by the low-frequency current noise

(supplementary online text). Note that quantum Hall-like conductance quantization has also

been proposed in superconducting devices with finite charging energy and hosting quantum

phase slips (22). Furthermore, superconducting junctions with a gate-tunable charging energy

may realize topologically-protected discrete charge pumping (23).

We now focus on a 4-terminal junction and investigate the energy spectrum as a function

of the three independent phases �1,2,3. As mentioned above, such a 3D bandstructure may host

Weyl points with positive or negative topological charge. The Nielsen-Ninomiya theorem (24)

implies that the total topological charge of the system is zero, such that the number of Weyl

points is always even. Furthermore, time-reversal invariance corresponds to a mapping from ˆ�

to �ˆ�, hence a Weyl point at ˆ�(0) has a counterpart at �ˆ�(0) with the same topological charge.

Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only one channel, the system may realize 0

or 4 Weyl points, corresponding to a topologically trivial or nontrivial 3D material, respectively.

If a scattering matrix yielding Weyl points is found, small changes in the scattering matrix only

modify their position, but cannot gap them. Namely, as the Weyl points carry a topological

charge, individual Weyl points are stable and annihilation is possible only when two Weyl points

6
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replaced by its average value. Thus, we find that the dc current is linear in the voltages, and the

transconductance is defined by the Chern number

I
↵

= G↵�V
�

with G↵�

= �2e2

⇡~ C↵�. (5)

Equation (5) shows that multi-terminal junctions exhibit a dc current response typical for the

quantum Hall effect, although based on different physics. The transconductance quantum is

four times bigger than in the quantum Hall effect, which can be traced to the 2e charge of the

superconducting Cooper pairs. To extract the small dc signal, the averaging time needs to be

sufficiently long. The relevant time scale is determined by the low-frequency current noise

(supplementary online text). Note that quantum Hall-like conductance quantization has also

been proposed in superconducting devices with finite charging energy and hosting quantum

phase slips (22). Furthermore, superconducting junctions with a gate-tunable charging energy

may realize topologically-protected discrete charge pumping (23).

We now focus on a 4-terminal junction and investigate the energy spectrum as a function

of the three independent phases �1,2,3. As mentioned above, such a 3D bandstructure may host

Weyl points with positive or negative topological charge. The Nielsen-Ninomiya theorem (24)

implies that the total topological charge of the system is zero, such that the number of Weyl

points is always even. Furthermore, time-reversal invariance corresponds to a mapping from ˆ�

to �ˆ�, hence a Weyl point at ˆ�(0) has a counterpart at �ˆ�(0) with the same topological charge.

Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only one channel, the system may realize 0

or 4 Weyl points, corresponding to a topologically trivial or nontrivial 3D material, respectively.

If a scattering matrix yielding Weyl points is found, small changes in the scattering matrix only

modify their position, but cannot gap them. Namely, as the Weyl points carry a topological

charge, individual Weyl points are stable and annihilation is possible only when two Weyl points

6

The crosses grow as single crystals of high mobility, comparable to
single InSb nanowires25.

We start with a qualitative description of the process we devel-
oped for the formation of crossed wires. The procedure includes
four steps, which are presented schematically in the insets in
Fig. 1, accompanied by corresponding scanning electron
microscopy (SEM) images. The first step is the fabrication of
uniform InP–InAs stems (Fig. 1a) according to the method
described in ref. 25. In step 2, the structure is thermally annealed
at 470 8C in a reactor chamber without any precursor, resulting in
partial evaporation of the InAs nanowire and indium enrichment
in the Au–In droplet. Because the particle volume increases and
the InAs nanowire diameter decreases, the droplet falls to one of
the three {112} InAs side facets (Fig. 1b, Supplementary Fig. S3).
It is then possible to start the growth of InSb nanowires in a hori-
zontal direction, parallel to the substrate (Fig. 1c), using the
optimal growth conditions (Supplementary Fig. S2) developed in
ref. 25 for high-mobility wires2,26. If an optimal diameter and
density of gold colloids are used, InSb nanowires growing from
different stems can meet and merge into nanostructures with T or
X shapes (Fig. 1d).

The merging of the wires will now be discussed in more detail. To
describe the nanowire intersection, three angles are defined
(Fig. 2b,c). c corresponds to the angle between the vertical stem
and the growth direction of the InSb nanowire, w is the in-plane
angle of the InSb nanowire, and g is the rotation angle of the

InSb nanowire around its long axis. Interestingly, these different
angles are not random, as will be shown below.

SEM side-view inspection of the samples shows that c is close to
908, implying that the tapering of the InAs nanowires is minimal. To
investigate the exact crystalline orientation of the InSb wires, X-ray
diffraction (XRD) measurements were performed in a symmetric
2u–v configuration. Figure 2a shows a diffraction spectrum of the
sample, where the (111) peaks of InP, InAs and InSb originate
from the stems and a thin layer on the substrate. Importantly, a
fourth peak also appears around the InSb(220) Bragg angle
(39.38). The intensity is rather weak due to the small volume of
material, but it is still detectable with a standard set-up, and the
2u full-width at half-maximum is !0.48. This peak originates
from InSb nanowires having one of their {110} side facets parallel
to the substrate surface. The fact that no other sets of InSb lattice
planes perpendicular to the k111l growth direction (for example,
(422)) show up in the XRD pattern proves that c and g are fixed
to 908 and 08, respectively (Supplementary Section S2). Because
stems and substrate have no horizontal k111l crystalline directions,
this demonstrates that the InSb nanowires have no epitaxial relation
with the InP–InAs stems, and the stems only serve as a
mechanical support.

To investigate w, we measured the angle Dw between two legs
for T- and X-shaped nanostructures (Fig. 2e,f ). For this study,
more than 100 InSb crosses were transferred onto a SiO2 sub-
strate and imaged from the top to provide a perpendicular
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Figure 2 | Merging process for two InSb nanowires. a, Symmetrical (2u–v) XRD measurement on an as-grown sample. b,c, Side view (b) and top view (c)
schemes of the InSb nanowires grown horizontally. The three angles defining the InSb growth direction are c, w and g. c corresponds to the angle between
the vertical stem and the growth direction of the InSb nanowire, w is the in-plane angle of the InSb nanowire with respect to the k1!10l direction of the
InP(111)B substrate, and g is the rotation angle of the InSb nanowire around its long axis, taking the alignment of the (220) InSb planes with the substrate
surface as a reference. d, High-resolution SEM image of an InP/InAs stem bent during the merging process. e, Statistics about the Dw angle between two
crossing InSb nanowires. f, Example of a branched structure: the two InSb nanowires should have a slight difference in altitude in order to merge into a
nanocross. All scale bars, 200 nm.
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InSb nanocrosses ? 
Plissard et al. (2013) 
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