université

 "Bordeaux
A short introduction to Topological insulators

Jérôme Cayssol

Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux

Outline

I) Semimetallic graphene: massless Dirac fermions
II) $\mathrm{h}-\mathrm{BN}$ and Haldane model: massive Dirac fermions trivial vs Chern insulators
III) Kane-Mele model: massive Dirac fermions with spin-orbit coupling Z2 topological insulators
IV) Experimental realizations of topological insulators

O- Brief reminder about Dirac and Weyl equations in high-energy physics

Dirac equation (1928)

Wave-equation for relativistic et quantum particle (electron)

$$
\begin{aligned}
E^{2} & =p^{2} c^{2}+m^{2} c^{4} \\
i \hbar \frac{\partial \Psi}{\partial t} & =c\left(-i \hbar \alpha_{i} \frac{\partial}{\partial x_{i}}+\beta m c\right) \Psi \\
E \Psi & =c\left(\alpha_{i} p_{i}+\beta m c\right) \Psi \\
\left\{\alpha_{i}, \beta\right\} & =0 \quad\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}
\end{aligned}
$$

Clifford algebra

$$
E \Psi=c\left(\alpha_{i} p_{i}+\beta m c\right) \Psi
$$

Coefficients must be Hermitian anti-commuting matrices squaring to identity

Pauli matrices (2×2): only 3 matrices which is not enough in 3D for a massive particle, but is enough for a massless particle
$\sigma_{1}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Dirac matrices (4×4): 15 matrices (more than needed)
Implies 4 components wave-functions: spin x particle/antiparticle

Dirac and Weyl equations (1928)

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4}
$$

$$
E= \pm c p
$$

At low velocity, one gets the non relativistic Schrödinger equation and the spin gets decoupled from the motion up to small corrective spin-orbit terms

I- Graphene: Massless Dirac fermions

Graphene: Dirac-like equation

Carbon is a light element: spin-orbit coupling is weak spin is basically decoupled from motion

But:

Graphene has a particular lattice structure which leads to an additional internal degree of freedom: the sublattice isospin.

It turns out that this sublattice isospin is tied to electronic motion.

Low energy electrons are described by a « Dirac-like » equation.

Graphene: honeycomb structure

$d_{C-C}=0.142 \mathrm{~nm}$

Atomic monolayer

2 sites/unit cell: 2 sublattices: A et B

3 sp 2 bondings +1 pz orbital per atom

$$
\left|\Psi_{\vec{k}}\right\rangle=\frac{1}{\sqrt{N}} \sum_{\vec{R}_{j}}\left(a_{\vec{k}}\left|\vec{R}_{j}, A\right\rangle+b_{\vec{k}}\left|\vec{R}_{j}, B\right\rangle\right) e^{i \vec{k} \cdot \vec{R}_{j}}
$$

internal degree of freedom: sub lattice isospin $\left(a_{k}, b_{k}\right)$

Tight-binding (TB) model

Schrödinger equation + projections on A and B orbitals

$$
H\left|\Psi_{\vec{k}}\right\rangle=E_{k}\left|\Psi_{\vec{k}}\right\rangle
$$

TB Hamiltonian in real space (only nearest neighbors hopping terms)

$$
H_{0}=-t \sum_{\vec{R}, \vec{\delta}_{\alpha}} c_{B}^{\dagger}(\vec{R}) c_{A}\left(\vec{R}+\vec{\delta}_{\alpha}\right)+H . c . \quad t=2.7 \mathrm{eV}
$$

with:
$-t=\int d^{3} r \phi^{*}\left(\vec{r}-\vec{R}_{A}-\vec{\delta}_{3}\right)\left(V(\vec{r})-V_{\mathrm{ato}}\left(\vec{r}-\vec{R}_{B}\right)\right) \phi\left(\vec{r}-\vec{R}_{B}\right)$

Diagonalization

$$
\begin{aligned}
H_{0} & =-t \sum_{\vec{k}, \vec{\delta}_{\alpha}} e^{i \vec{k} \cdot \vec{\delta}_{\alpha}} c_{B}^{\dagger}(\vec{k}) c_{A}(\vec{k})+H . c . \\
& =-t \sum_{\vec{k}} c_{\alpha}^{\dagger}(\vec{k})\left[h_{0}\right]_{\alpha \beta} c_{\beta}(\vec{k}) \quad \alpha, \beta=A, B
\end{aligned}
$$

$$
h_{0}(\vec{k})=-t \sum_{\vec{k}, \vec{\delta}_{\alpha}}\left(\cos \left(\vec{k} \cdot \vec{\delta}_{\alpha}\right) \sigma_{1}+\sin \left(\vec{k} \cdot \vec{\delta}_{\alpha}\right) \sigma_{2}\right)
$$

even function
odd function
Both functions periodic in reciprocal space

Electronic structure

Two bands (2 sites/unit cell)

$$
h_{0}(\vec{k})=d_{1}(\vec{k}) \sigma_{1}+d_{2}(\vec{k}) \sigma_{2}
$$

$$
E(\vec{k})= \pm\|\vec{d}(\vec{k})\|
$$

Band touching points (two valleys)
$d_{1}(\vec{k})=d_{2}(\vec{k})=0 \rightarrow \vec{k}= \pm \vec{K}$

1 electron/orbital (half-filling)

Electrostatic doping: it is possible to raise/lower the Fermi level in a reversible manner and without adding impurities.

Linearization near Dirac points

$$
\begin{aligned}
& \vec{k}=\xi \vec{K}+\vec{q} \quad \xi= \pm 1 \quad \text { (Valley index) } \\
& h_{0}(\xi \vec{K}+\vec{q}) \simeq \hbar v_{F}\left(\xi q_{x} \sigma_{1}+q_{y} \sigma_{2}\right)
\end{aligned}
$$

Linear dispersion (Dirac cone): electrons (or holes) behave as if they were massless

$$
E(\xi \vec{K}+\vec{q})=\hbar v_{F} \sqrt{q_{x}^{2}+q_{y}^{2}} \quad \text { valley independent }
$$

Fermi velocity: $\quad v_{F}=3 a t / 2 \hbar \simeq 10^{6} \mathrm{~m} . \mathrm{s}^{-1}$

Transport in ballistic graphene

$$
E_{F}=\hbar v_{F} q_{F} \quad \text { typically } 100 \mathrm{mev}
$$

electron/hole densities $\quad n \simeq 10^{-12} \mathrm{~cm}^{-2}$

Tworzydlo et al. , PRL 2006
No off-state!

Electronic transport

From C. Stampfer's group (Aachen)

Electronic optics

From Cory Dean's group
(Columbia), Science 2016

A

Protection of Dirac points

The possible perturbations: only the third Pauli matrix can open a gap at the Dirac points

$$
h_{0}(\vec{k})=d_{1}(\vec{k}) \sigma_{1}+d_{2}(\vec{k}) \sigma_{2}+d_{3}(\vec{k}) \sigma_{3}
$$

Inversion symmetry enforces the relation:

$$
h_{0}(\vec{k})=\sigma_{1} h_{0}(-\vec{k}) \sigma_{1} \quad \longrightarrow d_{3}(\vec{k})=-d_{3}(-\vec{k})
$$

Time-reversal symmetry (for spinless electrons) enforces the relation:

$$
h_{0}(\vec{k})=h_{0}^{*}(-\vec{k}) \quad \longrightarrow \quad d_{3}(\vec{k})=d_{3}(-\vec{k})
$$

Hence if both T and P are satisfied: $d_{3}(\vec{k})=0$

II)- Graphene:
 Massive spinless Dirac fermions

How to transform a semimetal into an insulator?
How to provide a mass to Dirac fermions?

Add a perturbation that anticommutes with graphene's kinetic Hamiltonian and breaks either T or P

$$
h_{0}(\vec{k})=d_{1}(\vec{k}) \sigma_{1}+d_{2}(\vec{k}) \sigma_{2}+d_{3}(\vec{k}) \sigma_{3}
$$

Dirac mass 1: Semenov model (1984)

The simplest perturbation is a staggered potential on A / B sites (Semenov, PRL 1984): +M on A sites and -M on B-sites

$$
d_{3}(\vec{k}) \sigma_{3}=M \sigma_{3}
$$

This k-independent perturbation breaks inversion symmetry (A and B orbitals are no longer identical)

The resulting insulator is a trivial band insulator

Relevant for hexagonal boron-nitride (h-BN) which is 2D insulator with a large gap (around 5 eV)

Dirac mass 2: Haldane model (1988)

A (far) less evident perturbation was proposed by D. Haldane. His initial motivation was to induce Quantum Hall effect in 2D lattice without Landau levels

Ingredients are :

- 2D crystal: graphene
- Break time-reversal symmetry (to generate Quantum Hall Effect)
- No net magnetic flux per unit cell (to avoid Landau Levels)
transverse charge flow

Haldane found that complex valued local fluxes with zero net average value meet all these criteria and do the job (PRL 1988).

Complex second-neighbor hopping

Red and blue arrows represent an electron jumping from A site to nearest A sites

$$
\begin{aligned}
& t_{2} e^{-i \varphi} \text { hopping with a B on the its right } \\
& t_{2} e^{i \varphi} \quad \text { hopping with a B on the its right }
\end{aligned}
$$

Same pattern on B sites

This staggered local fluxes pattern has the symmetry of the Bravais lattice and therefore one has a band insulator with states labelled by a quasimomentum

Haldane mass

$$
d_{3}(\vec{k})=2 t_{2} \sin \varphi \sum_{i=1}^{i=3} \sin \left(\vec{k} \cdot \vec{b}_{i}\right)
$$

This perturbation depends on momentum and breaks time-reversal symmetry

- The resulting band insulator exhibits a non trivial winding of the wave functions as gaps/masses are opposite at +K and -K
- This non trivial winding implies a chiral edge state

Hall response

Hamiltonian

$$
H=d_{x}(\vec{k}) \sigma_{x}+d_{y}(\vec{k}) \sigma_{y}+d_{z}(\vec{k}) \sigma_{z}
$$

Current operator:

$$
j_{i}=\frac{\partial \mathcal{H}(\mathbf{k})}{\partial k_{i}}=\frac{\partial \varepsilon_{0}(\mathbf{k})}{\partial k_{i}} \mathbf{I}_{2 \times 2}+\sum_{j}^{3} \frac{\partial \mathbf{d}(\mathbf{k})}{\partial k_{i}} . \boldsymbol{\sigma}
$$

Hall conductivity (Kubo formalism)

$$
\sigma_{x y}=\frac{e^{2}}{4 \pi h} \int_{\mathbf{B Z}} d^{2} \mathbf{k}\left(f_{+}(\mathbf{k})-f_{-}(\mathbf{k})\right)\left(\frac{\partial \hat{\mathbf{d}}(\mathbf{k})}{\partial k_{x}} \times \frac{\partial \hat{\mathbf{d}}(\mathbf{k})}{\partial k_{y}}\right) \cdot \hat{\mathbf{d}}(\mathbf{k})
$$

Insulator at $\mathrm{T}=0$:

$$
\sigma_{x y}=\frac{e^{2}}{h} n_{w}
$$

$$
n_{w}=\frac{1}{4 \pi} \int_{\mathbf{B Z}} d^{2} \mathbf{k}\left(\frac{\partial \hat{\mathbf{d}}(\mathbf{k})}{\partial k_{x}} \times \frac{\partial \hat{\mathbf{d}}(\mathbf{k})}{\partial k_{y}}\right) \cdot \hat{\mathbf{d}}
$$

This winding number is often zero, and has to be an integer

Topology: mapping BZ to BS

wave functions

Brillouin zone (tore T2)

$$
\hat{d}(\vec{k})=\frac{d(\vec{k})}{|\vec{d}(\vec{k})|}
$$

Topological invariant

Brillouin zone (torus T2)
Wavefunctions

For an isolated Dirac crossing with mass M:

$$
H=k_{a} A_{a b} \sigma_{b}+M \sigma_{z}
$$

$$
\downarrow
$$

Winding number

$$
n_{w}=\operatorname{sign}(M) \operatorname{sign}(\operatorname{Det} A) / 2
$$

Trivial insulator (TR invariant)

$$
H=v_{F}\left(\pm p_{x} \sigma_{x}+p_{y} \sigma_{y}\right)+d_{z}(\pm \vec{K}) \sigma_{z}
$$

Haldane insulator

$$
H=v_{F}\left(\pm p_{x} \sigma_{x}+p_{y} \sigma_{y}\right)+d_{z}(\pm \vec{K}) \sigma_{z}
$$

Bulk: < phase diagram »

competing Semenov and Haldane masses

$$
d_{z}(\pm \vec{K})=M_{1} \mp 3 \sqrt{3} t_{2} \sin \phi
$$

On the transition line

Transition: gap closing leading to a Dirac point jump in the Hall conductance

Interfaces between insulators

vacuum

III)- Graphene: massive Dirac fermions with spin

How to provide a mass to Dirac fermions without breaking T or P?

Dirac mass 3: Kane-Mele model

In 2004, Kane and Mele realized that it is possible to open gaps without breaking any of the fundamental symmetries (P, T).

Their initial motivation: combining spin Hall effect + graphene

Spin up electron flow

Spin-dependent complex hopping

The idea is to restore time-reversal invariance by gathering two copies of the Haldane model

$$
\mathcal{T}=i s_{y} K
$$

This corresponds to spin-orbit coupling
Same pattern on B sites

Kane-Mele model

$$
H=t \sum_{\langle i, j\rangle} c_{i \alpha}^{\dagger} c_{j \alpha}+i t_{2} \sum_{\langle\langle i, j\rangle\rangle} v_{i j} c_{i \alpha}^{\dagger}\left(s_{3}\right)_{\alpha \beta}^{\text {Spin-orbit coupling }} c_{j \beta}
$$

Spin-conserving model: two copies of Haldane model

Two counter propagating edge states

Quantum Spin Hall insulator

Robustness of the QSH insulator

One can add time-reversal invariant perturbations

Rashba spin mixing: λ_{R}
FIG. 1 (color online). Energy bands for a one-dimensional "zigzag" strip in the (a) QSH phase $\lambda_{v}=0.1 t$ and (b) the insulating phase $\lambda_{v}=0.4 t$. In both cases $\lambda_{\mathrm{SO}}=.06 t$ and $\lambda_{R}=$ $.05 t$. The edge states on a given edge cross at $k a=\pi$. The inset shows the phase diagram as a function of λ_{v} and λ_{R} for $0<$ $\lambda_{\mathrm{SO}} \ll t$.

Kramer's pairs

standard case: 2 pairs

$$
\quad \epsilon(k)
$$

non trivial: case one pair
Fermi level

Kramer's pairs number at Fermi level
Symmetry protection if this number is odd Z2-type topological invariant

Comparison Chern versus Z 2 insulators

Chern insulator

Chiral edge state
Time-reversal breaking
Bulk topological invariant: Z
Minimal bulk model: 2 bands
$h_{0}(\vec{k})=d_{1}(\vec{k}) \sigma_{1}+d_{2}(\vec{k}) \sigma_{2}+d_{3}(\vec{k}) \sigma_{3}$

Z2 insulator

helical edge state

Time-reversal symmetric

Bulk topological invariant: Z2
Minimal bulk model: 4 bands

$$
\mathcal{H}(\mathbf{k})=\sum_{a=1}^{5} d_{a}(\mathbf{k}) \Gamma^{a}+\sum_{a<b=1}^{5} d_{a b}(\mathbf{k}) \Gamma^{a b}
$$

Topology and Dirac mass

- Jackiw-Rebbi mechanism (1976):

$$
i \hbar \partial_{t} \Psi(x, t)=\left(-i \hbar \partial_{x} \sigma_{1}+m(x) \sigma_{2}\right) \Psi(x, t)
$$

- D-1 interfacial state $\mathrm{E}=0$, localised at $\mathrm{x}=0$ between two insulators

3D topological insulators

- Semiconductor: weak gap and strong SO coupling
- Dirac surface state (ARPES, STM, transport)

Each Bloch state k has only one spin direction

Surface state is spin-polarized

IV)- Topological insulators in real materials

Spin orbit is too weak in graphene

HgTe and Bi -based compounds: strong spin-orbit and close to band inversion

HgTe/CdTe

CdTe spectrum
HgTe spectrum

3D semiconductor

3D semimetal:
no gap

This can be described by 8 (or 6) band model (within k.p theory)

4-band model

«Ab-initio » 6-band model + envelope functions leads to BHZ model

Symmetry allowed terms (both linear and quadratic in momentum)

$$
\begin{aligned}
& d_{1}+i d_{2}=A\left(k_{x}+i k_{y}\right) \equiv A k_{+} \\
& d_{3}=M-B\left(k_{x}^{2}+k_{y}^{2}\right) \\
& \varepsilon(k)=C-D\left(k_{x}^{2}+k_{y}^{2}\right)
\end{aligned}
$$

$\mathrm{HgTe} / \mathrm{CdTe}$ quantum well

From B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science 314, 1757 (2006)

$$
M\left(d_{c}\right)=0
$$

Experiments

Koenig, Wiedmann, Brune, Buhmann, Molenkamp, Qi and Zhang, Science 2007

Edge conduction in III-IV cases (suppressed by magnetic field)
Theory: B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science 314, 1757 (2006) Experiments:
Konig, Wiedmann, Brune, Buhmann, Molenkamp, Qi and Zhang, Science 2007
Roth, Brune, Buhmann, Molenkamp, Maciejko, Qi and Zhang, Science 2009

Experiments

Roth, Brune, Buhmann, Molenkamp, Maciejko, Qi and Zhang, Science 2009

Fig. 1. Two-terminal ($R_{14,14}$) (top two traces) and four-terminal ($R_{14,23}$) (bottom traces) resistance versus (normalized) gate voltage for the Hall bar devices D1 and D2 with dimensions (length \times width) as indicated. The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Bi2Se3 and Bi2Te3

from Y. Ando, JSPJ review 2013

2D Surface states versus graphene

from J. Bardarson and J. Moore, Rep. Prog. Phys 2012

Chern insulator: experiment

$\mathrm{Cr}_{0.15}\left(\mathrm{Bi}_{0.1} \mathrm{Sb}_{0.9}\right)_{1.85} \mathrm{Te} 3$

Conclusions

Edge states provide new low dimensional conductors (1D) which differ from previously known 1D systems: nanowires, 1D organic conductors, carbon nanotubes.

The spin-momentum locking leads to:

- suppression of some scattering channels
- absence of backscattering by non magnetic impurities
- unusual proximity effect with superconductors: realization of exotic phases (Majorana quasiparticles)

Surface states of TIs also provide new low dimensional conductors (2D) which differ from previously known 2D systems: graphene, 2DEG trapped in heterojunctions.

Topologie: enroulement de Bloch 1D

- Nombre d'enroulement S1 vers S1:

Zone de Brillouin = cercle
Fonctions d'ondes
parametrées par un seul angle

$$
H(k)=d_{1}(k) \sigma_{1}+d_{2}(k) \sigma_{2}
$$

Topologie: enroulement de Bloch 1D

- Enroulement trivial des états de Bloch

- Enroulement non trivial

Weyl equation (1929)

Massless particle:

$$
\begin{aligned}
i\left(\partial_{t}-c \vec{\sigma} \cdot \partial_{\vec{r}}\right) \psi_{L} & =0 \\
i\left(\partial_{t}+c \vec{\sigma} \cdot \partial_{\vec{r}}\right) \psi_{R} & =0
\end{aligned}
$$

> Masse de Dirac:
> 4 nombres complexes
> $i\left(\partial_{t}-c \vec{\sigma} \cdot \partial_{\vec{r}}\right) \psi_{L}=m \psi_{R}$
> $i\left(\partial_{t}+c \vec{\sigma} \cdot \partial_{\vec{r}}\right) \psi_{R}=m \psi_{L}$

Neutrinos massifs: Dirac ou Majoranas ?

BHZ model on the square lattice

2 blocks

Spin-up block describes a Chern insulator

Edge states on finite lattices

It is the realization of a Z 2 topological insulator

BHZ model: topological properties

$\mathcal{H}(k)=\sin k_{x} \sigma_{1}+\sin k_{y} \sigma_{2}+\left(M-2 B\left(2-\cos k_{x}-\cos k_{y}\right)\right) \sigma_{3}$

Réseau carré avec 2 orbitales (s et p) sur chaque site (électrons sans spin)

Dirac points	$(0,0)$	$(\pi, 0)$	$(0, \pi)$	(π, π)	Ch
mass	M	$M-4 B$	$M-4 B$	$M-8 B$	
chirality	+	-	-	+	
$M<0$	-	+	+	-	0
$M \in(0,4 B)$	+	+	+	-	+
$M \in(4 B, 8 B)$	+	-	-	-	-
$M>8 B$	+	-	-	+	0

Modèle: B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science 314, 1757 (2006)
Doru Sticlet et al., Phys. Rev. B 85, 165456 (2012)

$M<0$

$n_{w}=0$

Configuration "ferromagnétique" $d_{3}(\boldsymbol{k})$

$0<M<4 B$

$n_{w}=1$

Configuration skyrmionique

$4 B<M<8 B$

$$
n_{w}=-1
$$

Autre configuration skyrmionique $d_{3}(\boldsymbol{k})$

$4 B<M<8 B$

$$
n_{w}=-1
$$

Autre configuration skyrmionique $d_{3}(\boldsymbol{k})$

$M>8 B$

$$
n_{w}=0
$$

Configuration ferromagnétique $d_{3}(\boldsymbol{k})$

InAs/GaSb electron/hole bilayer

Transition can be driven by gating

```
H_0 = - t \sum_{\vec{R},\vec{\delta}_\alpha} c^\dagger_B(\vec{R}) c_A(\vec{R}+\vec{\delta}_\alpha)
+ H.c.
H_0 = - t \sum_{\vec{k},\vec{\delta}_\alpha} e^{i \vec{k} . \vec{\delta}_\alpha} c^
    \dagger_B(\vec{k}) c_A(\vec{k}) + H.c.
\, \, \, h_0 (\vec{k})= - t \sum_{\vec{k}, \vec{\delta}_\alpha} \left( \cos(\vec{k} .
\vec{\delta}_\alpha) \sigma_1 + \sin( \vec{k} . \vec{\delta}_\alpha) \sigma_2 \right)
h_0 (\vec{k})=0 -> \vec{k}= \pm \vec{K}
\, \, \, h_0 (\vec{k})= - t \sum_{\vec{k}, \vec{\delta}_\alpha} \left( {\color{red}
\cos( \vec{k} . \vec{\delta}_\alpha) }\sigma_1 + {\color{blue} \sin( \vec{k} . \vec{\delta}_
\alpha) } \sigma_2 \right)
= - t \sum_{\vec{k}} c^\dagger_\alpha(\vec{k}) [h_{0}]_{\alpha \beta} c_\beta(\vec{k})
    - t=\int d^3r \, \phi^*(\vec{r}-\vec{R}_A-\vec{\delta}_3)(V(\vec{r})-V_{\rm ato}(\vec{r}-
\vec{R}_B)) \phi(\vec{r}-\vec{R}_B)
h_0 (\vec{k})= \sigma_1 h_0 (-\vec{k}) \sigma_1 h_0 (\vec{k})= h_0^* (-\vec{k})
E_F= \hbar v_F {\color{blue} q_F}
```

```
        {\color{red} d_3(\vec{k}) =- d_3(-\vec{k}) }
        v_F = 3 at/2\hbar \simeq 10^6 {\rm m.s^{-1}}
    E({\color{red} \xi } \vec{K} + {\color{blue} \vec{q} } \,) = \hbar v_F {\color{blue}
\sqrt{q_x^2+q_y^2}}
\vec{k} = \vec{K} + {\color{blue} \vec{a} }
```


,
,
,
, h_0 (\{\color\{red\} \xi \}\vec\{K\} + \{\color\{blue\} \vec\{a\} \}
,) \simeq \hbar v_F


```
\vec{k} = {\color{red} \xi} \vec{K} + {\color{blue} \vec{q} }
h_0 (\vec{k})= h_0^* (-\vec{k})
```

$\{\backslash c o l o r\{b l u e\} ~ T \wedge 2=-1\}$

